z[4(z+2)-5(z-1)]=3(z-1)(z+2)

Simple and best practice solution for z[4(z+2)-5(z-1)]=3(z-1)(z+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z[4(z+2)-5(z-1)]=3(z-1)(z+2) equation:


Simplifying
z[4(z + 2) + -5(z + -1)] = 3(z + -1)(z + 2)

Reorder the terms:
z[4(2 + z) + -5(z + -1)] = 3(z + -1)(z + 2)
z[(2 * 4 + z * 4) + -5(z + -1)] = 3(z + -1)(z + 2)
z[(8 + 4z) + -5(z + -1)] = 3(z + -1)(z + 2)

Reorder the terms:
z[8 + 4z + -5(-1 + z)] = 3(z + -1)(z + 2)
z[8 + 4z + (-1 * -5 + z * -5)] = 3(z + -1)(z + 2)
z[8 + 4z + (5 + -5z)] = 3(z + -1)(z + 2)

Reorder the terms:
z[8 + 5 + 4z + -5z] = 3(z + -1)(z + 2)

Combine like terms: 8 + 5 = 13
z[13 + 4z + -5z] = 3(z + -1)(z + 2)

Combine like terms: 4z + -5z = -1z
z[13 + -1z] = 3(z + -1)(z + 2)
[13 * z + -1z * z] = 3(z + -1)(z + 2)
[13z + -1z2] = 3(z + -1)(z + 2)

Reorder the terms:
13z + -1z2 = 3(-1 + z)(z + 2)

Reorder the terms:
13z + -1z2 = 3(-1 + z)(2 + z)

Multiply (-1 + z) * (2 + z)
13z + -1z2 = 3(-1(2 + z) + z(2 + z))
13z + -1z2 = 3((2 * -1 + z * -1) + z(2 + z))
13z + -1z2 = 3((-2 + -1z) + z(2 + z))
13z + -1z2 = 3(-2 + -1z + (2 * z + z * z))
13z + -1z2 = 3(-2 + -1z + (2z + z2))

Combine like terms: -1z + 2z = 1z
13z + -1z2 = 3(-2 + 1z + z2)
13z + -1z2 = (-2 * 3 + 1z * 3 + z2 * 3)
13z + -1z2 = (-6 + 3z + 3z2)

Solving
13z + -1z2 = -6 + 3z + 3z2

Solving for variable 'z'.

Reorder the terms:
6 + 13z + -3z + -1z2 + -3z2 = -6 + 3z + 3z2 + 6 + -3z + -3z2

Combine like terms: 13z + -3z = 10z
6 + 10z + -1z2 + -3z2 = -6 + 3z + 3z2 + 6 + -3z + -3z2

Combine like terms: -1z2 + -3z2 = -4z2
6 + 10z + -4z2 = -6 + 3z + 3z2 + 6 + -3z + -3z2

Reorder the terms:
6 + 10z + -4z2 = -6 + 6 + 3z + -3z + 3z2 + -3z2

Combine like terms: -6 + 6 = 0
6 + 10z + -4z2 = 0 + 3z + -3z + 3z2 + -3z2
6 + 10z + -4z2 = 3z + -3z + 3z2 + -3z2

Combine like terms: 3z + -3z = 0
6 + 10z + -4z2 = 0 + 3z2 + -3z2
6 + 10z + -4z2 = 3z2 + -3z2

Combine like terms: 3z2 + -3z2 = 0
6 + 10z + -4z2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(3 + 5z + -2z2) = 0

Factor a trinomial.
2((3 + -1z)(1 + 2z)) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(3 + -1z)' equal to zero and attempt to solve: Simplifying 3 + -1z = 0 Solving 3 + -1z = 0 Move all terms containing z to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + -1z = 0 + -3 Combine like terms: 3 + -3 = 0 0 + -1z = 0 + -3 -1z = 0 + -3 Combine like terms: 0 + -3 = -3 -1z = -3 Divide each side by '-1'. z = 3 Simplifying z = 3

Subproblem 2

Set the factor '(1 + 2z)' equal to zero and attempt to solve: Simplifying 1 + 2z = 0 Solving 1 + 2z = 0 Move all terms containing z to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + 2z = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2z = 0 + -1 2z = 0 + -1 Combine like terms: 0 + -1 = -1 2z = -1 Divide each side by '2'. z = -0.5 Simplifying z = -0.5

Solution

z = {3, -0.5}

See similar equations:

| 0=x^2-11x-11 | | 2(w-5)=w+2-3(-5w-2) | | -27=-3s | | sin(x)=0.03 | | (5x-2)(x-6)=0 | | 6x-6(6)=6 | | 2(w+9)=-2(6w-2)+2w | | 2x^2-472=0 | | 3xcubed+24xsquared=-45x | | 10x+2=2+9 | | 2f-5=0 | | 7(4+5n)=-10-3n | | 10-22k=-10k^2+7k | | -5(-5u+3)-7u=3(u-1)-6 | | 5f-17=0 | | 7x/x-8or=0 | | 2(5-3(4-x))-7=3(2(5x-1)+8)-15 | | 2m^2-2m-15=0 | | 7x/x-80 | | -0.9x+4.97=-0.7x+3.57 | | 16+1/4(x+8)=9(x+2) | | x^2-11x+7x+15=180 | | 7x/x-8 | | 2x^2+12=-18 | | 4y-36=7(y-6) | | .5x+.23(x-5)=7 | | 3X^2-4Xy+2Y^2=59 | | -4(v+3)=3v-5 | | 3x+4=197 | | 9s2-49t2/dt/3/t-7/s | | (b/16)=(30/20) | | 6(8)=x(x+8) |

Equations solver categories